Mathematical Competition for Students of the Department of Mathematics and Informatics of Vilnius University Problems and Solutions

Paulius Drungilas ${ }^{1}$, Artūras Dubickas ${ }^{2}$

2018-02-17

PROBLEMS

Problem 1. Is it possible to place the integers from 1 to 10 in the unshaded boxes of

the table in such a way that the four sums of numbers in two rows of four boxes and in two columns of three boxes
a) are all equal to 20 ?
b) are all equal to 16 ?

Problem 2. Is it true that for each positive integer n there exists a positive integer m such that $n \mid m$ and the sum of the digits of m equals n ?

Problem 3. Find all pairs of positive integers (m, n) for which there exists a polynomial with real coefficients $P(x, y)$ satisfying the following four conditions
(1) $\operatorname{deg}_{x} P=m$,
(2) $\operatorname{deg}_{y} P=n$,
(3) $P(x, y)>0$ for all $(x, y) \in \mathbb{R}^{2}$,
(4) $\inf _{(x, y) \in \mathbb{R}^{2}} P(x, y)=0$
or prove that there are no such pairs (m, n).
Problem 4. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a non-decreasing function satisfying $f(1)>2$ and $f(2)<3$. Prove that $f(x)=x+1$ for some $x \in(1,2)$.

Each problem is worth 10 points.

[^0]
PROBLEMS WITH SOLUTIONS

Problem 1. Is it possible to place the integers from 1 to 10 in the unshaded boxes of the table in such a way that the four sums of numbers in two rows of four boxes and in two columns of three boxes
a) are all equal to 20 ?
b) are all equal to 16 ?

Answer: a) Yes; b) No.
Solution. Denote by x the sum of the four corner numbers. The sum of the integers from 1 to 10 is 55 . Therefore, the sum of the numbers in the two rows and the two columns is $55+x$.

Now, in case a) we get $4 \cdot 20=55+x$, which implies $x=25$. For example, we can fill the table as shown below.

10	5	1	4
8			7
2	3	6	9

In case b) one gets $4 \cdot 16=55+x$, which implies $x=9$. However, the sum of four corner numbers is at least $1+2+3+4=10$, a contradiction.

Problem 2. Is it true that for each positive integer n there exists a positive integer m such that $n \mid m$ and the sum of the digits of m equals n ?

Answer: Yes.
Solution 1. Write $n=2^{a} 5^{b} k$, where a, b are nonnegative integers and $k \in \mathbb{N}$ is coprime to 10 . Set $\ell=\max (a, b)$. By Euler's theorem, there is a positive integer s for which we have $10^{s} \equiv 1(\bmod k)$. Consider the integer

$$
m=10^{s \ell}+10^{s(\ell+1)}+\cdots+10^{s(\ell+n-1)} .
$$

We will show that m has the required property. Indeed, m has n (decimal) digits equal to 1 and other digits equal to 0 . Hence, the sum of the digits of m equals n. Furthermore, m is divisible by $10^{s \ell}$, and so by $2^{a} 5^{b}$. Also, by the choice of s and m, the number m modulo k is zero, since $k \mid n$. Now, as $\operatorname{gcd}\left(2^{a} 5^{b}, k\right)=1$, we conclude that m is divisible by $2^{a} 5^{b} k=n$.

Solution 2. Consider n^{2} positive integers 10^{j}, where $j=0,1, \ldots, n^{2}-1$. Since there are n possible remainders modulo n, i.e., $0,1, \ldots, n-1$, by Dirichlet's box principle, at least n of those n^{2} integers, say, $10^{k_{1}}, \ldots, 10^{k_{n}}$, where $0 \leqslant k_{1}<\cdots<k_{n} \leqslant n^{2}-1$, modulo n give the same remainder r. (Here, $r \in\{0,1, \ldots, n-1\}$.) Thus, the sum of those integers $m=10^{k_{1}}+\cdots+10^{k_{n}}$ is divisible by n. It is also clear that the sum of digits of m equals n.

Problem 3. Find all pairs of positive integers (m, n) for which there exists a polynomial with real coefficients $P(x, y)$ satisfying the following four conditions
(1) $\operatorname{deg}_{x} P=m$,
(2) $\operatorname{deg}_{y} P=n$,
(3) $P(x, y)>0$ for all $(x, y) \in \mathbb{R}^{2}$,
(4) $\inf _{(x, y) \in \mathbb{R}^{2}} P(x, y)=0$
or prove that there are no such pairs (m, n).
Answer: All pairs $(m, n) \in \mathbb{N}^{2}$, where both m and n are even.
Solution. Suppose first that one of the numbers, say, m is odd, and assume that such a polynomial $P(x, y)$ exists. Let us write this polynomial in the form

$$
P(x, y)=x^{m} Q_{m}(y)+\cdots+x Q_{1}(y)+Q_{0}(y),
$$

where $Q_{m}(y), \ldots, Q_{1}(y), Q_{0}(y)$ are some polynomials in y and $Q_{m}(y)$ is not identically zero. Select any $y_{0} \in \mathbb{R}$ for which $q_{m}=Q_{m}\left(y_{0}\right) \neq 0$ and set $q_{j}=Q_{j}\left(y_{0}\right)$ for $j=$ $0, \ldots, m-1$. Then, $P\left(x, y_{0}\right)=q_{m} x^{m}+\cdots+q_{1} x+q_{0}$ is polynomial in x of odd degree. Therefore, there is $x_{0} \in \mathbb{R}$ for which $P\left(x_{0}, y_{0}\right)<0$, contrary to the condition (3). This proves that there is no such polynomial P in case m is odd. The proof for n odd is exactly the same.

Now, assume that both m and n are even. For $m \geqslant n$ let us consider the polynomial

$$
P(x, y)=(x y-1)^{n}+x^{m}
$$

It is clear that $\operatorname{deg}_{x} P=m$ and $\operatorname{deg}_{y} P=n$, so the conditions (1) and (2) are satisfied. Also, since m, n are even, we have $P(x, y) \geqslant 0$ with equality only for $(x, y) \in \mathbb{R}^{2}$ satisfying $x y-1=0$ and $x=0$. This is clearly impossible. Hence, $P(x, y)>0$ for any pair $(x, y) \in \mathbb{R}^{2}$, which means that the condition (3) is also satisfied. Finally, for each $N \in \mathbb{N}$ selecting $\left(x_{N}, y_{N}\right)=\left(N^{-1}, N\right)$ we find that $P\left(x_{N}, y_{N}\right)=P\left(N^{-1}, N\right)=N^{-m}$, which tends to 0 as $N \rightarrow \infty$. This proves that the condition (4) is also satisfied. For $m<n$, by the same argument, the polynomial $P(x, y)=(x y-1)^{m}+y^{n}$ satisfies all four conditions.

Problem 4. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a non-decreasing function satisfying $f(1)>2$ and $f(2)<3$. Prove that $f(x)=x+1$ for some $x \in(1,2)$.

Proof. Let $A \subset[1,2]$ be a set of points a such that $f(a) \geqslant a+1$. Then, $1 \in A$ and $2 \notin A$. Set $\xi:=\sup A$. Then, for any $\varepsilon>0$ there is $a \in A$ such that $\xi-\varepsilon<a \leqslant \xi$. Hence,

$$
\xi+1-f(\xi) \leqslant \xi+1-f(a) \leqslant a+\varepsilon+1-f(a) \leqslant \varepsilon
$$

Since ε is arbitrary, this yields $f(\xi) \geqslant \xi+1$. Therefore, $\xi \in A$ and so $\xi \in[1,2)$.
We claim that $f(\xi)=\xi+1$ and $\xi \in(1,2)$, so that ξ is one of the required x. Suppose $\delta:=f(\xi)-\xi-1>0$. Take any $y>\xi$ such that $y<\min \{\xi+\delta, 2\}$. Then, $y+1>f(y)$, since otherwise $y \in A$. Now, as f is non-decreasing, we find that

$$
y+1>f(y) \geqslant f(\xi)=\xi+1+\delta>y+1
$$

which is impossible. Hence, $\delta=0$ and so $f(\xi)=\xi+1$. Finally, from $f(1)>2$ it follows that $\xi \neq 1$, so ξ belongs to the interval $(1,2)$.

[^0]: ${ }^{1}$ Institute of Mathematics, Department of Mathematics and Informatics, Vilnius University, Naugarduko 24, Vilnius LT-03225, Lithuania, http://www.mif.vu.lt/~drungilas/
 ${ }^{2}$ Institute of Mathematics, Department of Mathematics and Informatics, Vilnius University, Naugarduko 24, Vilnius LT-03225, Lithuania, http://www.mif.vu.lt/~dubickas/

