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PROBLEMS

Problem 1. Is it possible to place the integers from 1 to 10 in the unshaded boxes of

the table in such a way that the four sums of numbers in two rows of four boxes and in
two columns of three boxes

a) are all equal to 20?
b) are all equal to 16?

Problem 2. Is it true that for each positive integer n there exists a positive integer m
such that n|m and the sum of the digits of m equals n?

Problem 3. Find all pairs of positive integers (m,n) for which there exists a polynomial
with real coefficients P (x, y) satisfying the following four conditions

(1) degx P = m,
(2) degy P = n,
(3) P (x, y) > 0 for all (x, y) ∈ R2,
(4) inf(x,y)∈R2 P (x, y) = 0

or prove that there are no such pairs (m,n).

Problem 4. Let f : R → R be a non-decreasing function satisfying f(1) > 2 and
f(2) < 3. Prove that f(x) = x+ 1 for some x ∈ (1, 2).

Each problem is worth 10 points.
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PROBLEMS WITH SOLUTIONS

Problem 1. Is it possible to place the integers from 1 to 10 in the unshaded boxes of
the table in such a way that the four sums of numbers in two rows of four boxes and in
two columns of three boxes

a) are all equal to 20?
b) are all equal to 16?

Answer: a) Yes; b) No.

Solution. Denote by x the sum of the four corner numbers. The sum of the integers from
1 to 10 is 55. Therefore, the sum of the numbers in the two rows and the two columns
is 55 + x.

Now, in case a) we get 4 · 20 = 55 + x, which implies x = 25. For example, we can fill
the table as shown below.

In case b) one gets 4 · 16 = 55 + x, which implies x = 9. However, the sum of four
corner numbers is at least 1 + 2 + 3 + 4 = 10, a contradiction. �

Problem 2. Is it true that for each positive integer n there exists a positive integer m
such that n|m and the sum of the digits of m equals n?

Answer: Yes.

Solution 1. Write n = 2a5bk, where a, b are nonnegative integers and k ∈ N is coprime
to 10. Set ` = max(a, b). By Euler’s theorem, there is a positive integer s for which we
have 10s ≡ 1 (mod k). Consider the integer

m = 10s` + 10s(`+1) + · · ·+ 10s(`+n−1).

We will show that m has the required property. Indeed, m has n (decimal) digits
equal to 1 and other digits equal to 0. Hence, the sum of the digits of m equals n.
Furthermore, m is divisible by 10s`, and so by 2a5b. Also, by the choice of s and m, the
number m modulo k is zero, since k|n. Now, as gcd(2a5b, k) = 1, we conclude that m is
divisible by 2a5bk = n. �
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Solution 2. Consider n2 positive integers 10j, where j = 0, 1, . . . , n2− 1. Since there are
n possible remainders modulo n, i.e., 0, 1, . . . , n−1, by Dirichlet’s box principle, at least
n of those n2 integers, say, 10k1 , . . . , 10kn , where 0 6 k1 < · · · < kn 6 n2 − 1, modulo n
give the same remainder r. (Here, r ∈ {0, 1, . . . , n−1}.) Thus, the sum of those integers
m = 10k1 + · · ·+10kn is divisible by n. It is also clear that the sum of digits of m equals
n. �

Problem 3. Find all pairs of positive integers (m,n) for which there exists a polynomial
with real coefficients P (x, y) satisfying the following four conditions

(1) degx P = m,
(2) degy P = n,
(3) P (x, y) > 0 for all (x, y) ∈ R2,
(4) inf(x,y)∈R2 P (x, y) = 0

or prove that there are no such pairs (m,n).

Answer: All pairs (m,n) ∈ N2, where both m and n are even.

Solution. Suppose first that one of the numbers, say, m is odd, and assume that such a
polynomial P (x, y) exists. Let us write this polynomial in the form

P (x, y) = xmQm(y) + · · ·+ xQ1(y) +Q0(y),

where Qm(y), . . . , Q1(y), Q0(y) are some polynomials in y and Qm(y) is not identically
zero. Select any y0 ∈ R for which qm = Qm(y0) 6= 0 and set qj = Qj(y0) for j =

0, . . . ,m− 1. Then, P (x, y0) = qmx
m + · · ·+ q1x+ q0 is polynomial in x of odd degree.

Therefore, there is x0 ∈ R for which P (x0, y0) < 0, contrary to the condition (3). This
proves that there is no such polynomial P in case m is odd. The proof for n odd is
exactly the same.

Now, assume that both m and n are even. For m > n let us consider the polynomial

P (x, y) = (xy − 1)n + xm.

It is clear that degx P = m and degy P = n, so the conditions (1) and (2) are satisfied.
Also, since m,n are even, we have P (x, y) > 0 with equality only for (x, y) ∈ R2

satisfying xy − 1 = 0 and x = 0. This is clearly impossible. Hence, P (x, y) > 0 for any
pair (x, y) ∈ R2, which means that the condition (3) is also satisfied. Finally, for each
N ∈ N selecting (xN , yN) = (N−1, N) we find that P (xN , yN) = P (N−1, N) = N−m,
which tends to 0 as N → ∞. This proves that the condition (4) is also satisfied. For
m < n, by the same argument, the polynomial P (x, y) = (xy− 1)m+ yn satisfies all four
conditions. �
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Problem 4. Let f : R → R be a non-decreasing function satisfying f(1) > 2 and
f(2) < 3. Prove that f(x) = x+ 1 for some x ∈ (1, 2).

Proof. Let A ⊂ [1, 2] be a set of points a such that f(a) > a+1. Then, 1 ∈ A and 2 /∈ A.
Set ξ := supA. Then, for any ε > 0 there is a ∈ A such that ξ − ε < a 6 ξ. Hence,

ξ + 1− f(ξ) 6 ξ + 1− f(a) 6 a+ ε+ 1− f(a) 6 ε.

Since ε is arbitrary, this yields f(ξ) > ξ + 1. Therefore, ξ ∈ A and so ξ ∈ [1, 2).
We claim that f(ξ) = ξ +1 and ξ ∈ (1, 2), so that ξ is one of the required x. Suppose

δ := f(ξ)− ξ − 1 > 0. Take any y > ξ such that y < min{ξ + δ, 2}. Then, y + 1 > f(y),
since otherwise y ∈ A. Now, as f is non-decreasing, we find that

y + 1 > f(y) > f(ξ) = ξ + 1 + δ > y + 1,

which is impossible. Hence, δ = 0 and so f(ξ) = ξ + 1. Finally, from f(1) > 2 it follows
that ξ 6= 1, so ξ belongs to the interval (1, 2). �


