Mathematical Competition for Students of the Department of Mathematics and Informatics of Vilnius University Problems and Solutions

Paulius Drungilas¹, Artūras Dubickas²

2018-02-17

PROBLEMS

Problem 1. Is it possible to place the integers from 1 to 10 in the unshaded boxes of

the table in such a way that the four sums of numbers in two rows of four boxes and in two columns of three boxes

- a) are all equal to 20?
- b) are all equal to 16?

Problem 2. Is it true that for each positive integer n there exists a positive integer m such that n|m and the sum of the digits of m equals n?

Problem 3. Find all pairs of positive integers (m, n) for which there exists a polynomial with real coefficients P(x, y) satisfying the following four conditions

- (1) $\deg_x P = m$,
- (2) $\deg_u P = n$,
- (3) P(x,y) > 0 for all $(x,y) \in \mathbb{R}^2$,
- (4) $\inf_{(x,y)\in\mathbb{R}^2} P(x,y) = 0$

or prove that there are no such pairs (m, n).

Problem 4. Let $f : \mathbb{R} \to \mathbb{R}$ be a non-decreasing function satisfying f(1) > 2 and f(2) < 3. Prove that f(x) = x + 1 for some $x \in (1, 2)$.

Each problem is worth 10 points.

²Institute of Mathematics, Department of Mathematics and Informatics, Vilnius University, Naugarduko 24, Vilnius LT-03225, Lithuania, http://www.mif.vu.lt/~dubickas/

¹Institute of Mathematics, Department of Mathematics and Informatics, Vilnius University, Naugarduko 24, Vilnius LT-03225, Lithuania, http://www.mif.vu.lt/~drungilas/

PROBLEMS WITH SOLUTIONS

Problem 1. Is it possible to place the integers from 1 to 10 in the unshaded boxes of the table in such a way that the four sums of numbers in two rows of four boxes and in two columns of three boxes

- a) are all equal to 20?
- b) are all equal to 16?

Answer: a) Yes; b) No.

Solution. Denote by x the sum of the four corner numbers. The sum of the integers from 1 to 10 is 55. Therefore, the sum of the numbers in the two rows and the two columns is 55 + x.

Now, in case a) we get $4 \cdot 20 = 55 + x$, which implies x = 25. For example, we can fill the table as shown below.

10	5	1	4
8			7
2	3	6	9

In case b) one gets $4 \cdot 16 = 55 + x$, which implies x = 9. However, the sum of four corner numbers is at least 1 + 2 + 3 + 4 = 10, a contradiction.

Problem 2. Is it true that for each positive integer n there exists a positive integer m such that n|m and the sum of the digits of m equals n?

Answer: Yes.

Solution 1. Write $n = 2^a 5^b k$, where a, b are nonnegative integers and $k \in \mathbb{N}$ is coprime to 10. Set $\ell = \max(a, b)$. By Euler's theorem, there is a positive integer s for which we have $10^s \equiv 1 \pmod{k}$. Consider the integer

$$m = 10^{s\ell} + 10^{s(\ell+1)} + \dots + 10^{s(\ell+n-1)}.$$

We will show that m has the required property. Indeed, m has n (decimal) digits equal to 1 and other digits equal to 0. Hence, the sum of the digits of m equals n. Furthermore, m is divisible by $10^{s\ell}$, and so by $2^a 5^b$. Also, by the choice of s and m, the number m modulo k is zero, since k|n. Now, as $gcd(2^a 5^b, k) = 1$, we conclude that m is divisible by $2^a 5^b k = n$.

Solution 2. Consider n^2 positive integers 10^j , where $j = 0, 1, \ldots, n^2 - 1$. Since there are n possible remainders modulo n, i.e., $0, 1, \ldots, n-1$, by Dirichlet's box principle, at least n of those n^2 integers, say, $10^{k_1}, \ldots, 10^{k_n}$, where $0 \le k_1 < \cdots < k_n \le n^2 - 1$, modulo n give the same remainder r. (Here, $r \in \{0, 1, \ldots, n-1\}$.) Thus, the sum of those integers $m = 10^{k_1} + \cdots + 10^{k_n}$ is divisible by n. It is also clear that the sum of digits of m equals n.

Problem 3. Find all pairs of positive integers (m, n) for which there exists a polynomial with real coefficients P(x, y) satisfying the following four conditions

- (1) $\deg_x P = m$,
- (2) $\deg_y P = n$,
- (3) P(x,y) > 0 for all $(x,y) \in \mathbb{R}^2$,
- (4) $\inf_{(x,y)\in\mathbb{R}^2} P(x,y) = 0$

or prove that there are no such pairs (m, n).

Answer: All pairs $(m, n) \in \mathbb{N}^2$, where both m and n are even.

Solution. Suppose first that one of the numbers, say, m is odd, and assume that such a polynomial P(x, y) exists. Let us write this polynomial in the form

$$P(x, y) = x^{m}Q_{m}(y) + \dots + xQ_{1}(y) + Q_{0}(y),$$

where $Q_m(y), \ldots, Q_1(y), Q_0(y)$ are some polynomials in y and $Q_m(y)$ is not identically zero. Select any $y_0 \in \mathbb{R}$ for which $q_m = Q_m(y_0) \neq 0$ and set $q_j = Q_j(y_0)$ for $j = 0, \ldots, m-1$. Then, $P(x, y_0) = q_m x^m + \cdots + q_1 x + q_0$ is polynomial in x of odd degree. Therefore, there is $x_0 \in \mathbb{R}$ for which $P(x_0, y_0) < 0$, contrary to the condition (3). This proves that there is no such polynomial P in case m is odd. The proof for n odd is exactly the same.

Now, assume that both m and n are even. For $m \ge n$ let us consider the polynomial

$$P(x, y) = (xy - 1)^n + x^m.$$

It is clear that $\deg_x P = m$ and $\deg_y P = n$, so the conditions (1) and (2) are satisfied. Also, since m, n are even, we have $P(x, y) \ge 0$ with equality only for $(x, y) \in \mathbb{R}^2$ satisfying xy - 1 = 0 and x = 0. This is clearly impossible. Hence, P(x, y) > 0 for any pair $(x, y) \in \mathbb{R}^2$, which means that the condition (3) is also satisfied. Finally, for each $N \in \mathbb{N}$ selecting $(x_N, y_N) = (N^{-1}, N)$ we find that $P(x_N, y_N) = P(N^{-1}, N) = N^{-m}$, which tends to 0 as $N \to \infty$. This proves that the condition (4) is also satisfied. For m < n, by the same argument, the polynomial $P(x, y) = (xy - 1)^m + y^n$ satisfies all four conditions. **Problem 4.** Let $f : \mathbb{R} \to \mathbb{R}$ be a non-decreasing function satisfying f(1) > 2 and f(2) < 3. Prove that f(x) = x + 1 for some $x \in (1, 2)$.

Proof. Let $A \subset [1, 2]$ be a set of points a such that $f(a) \ge a+1$. Then, $1 \in A$ and $2 \notin A$. Set $\xi := \sup A$. Then, for any $\varepsilon > 0$ there is $a \in A$ such that $\xi - \varepsilon < a \le \xi$. Hence,

$$\xi + 1 - f(\xi) \leqslant \xi + 1 - f(a) \leqslant a + \varepsilon + 1 - f(a) \leqslant \varepsilon.$$

Since ε is arbitrary, this yields $f(\xi) \ge \xi + 1$. Therefore, $\xi \in A$ and so $\xi \in [1, 2)$.

We claim that $f(\xi) = \xi + 1$ and $\xi \in (1, 2)$, so that ξ is one of the required x. Suppose $\delta := f(\xi) - \xi - 1 > 0$. Take any $y > \xi$ such that $y < \min\{\xi + \delta, 2\}$. Then, y + 1 > f(y), since otherwise $y \in A$. Now, as f is non-decreasing, we find that

$$y + 1 > f(y) \ge f(\xi) = \xi + 1 + \delta > y + 1,$$

which is impossible. Hence, $\delta = 0$ and so $f(\xi) = \xi + 1$. Finally, from f(1) > 2 it follows that $\xi \neq 1$, so ξ belongs to the interval (1, 2).