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PROBLEMS

Problem 1. There are 20 clubs in a football league of some country. It turned out

that after 19 rounds, when any two clubs played one game between themselves, the total

number of points collected by all 20 teams is 554. (In football, after a game between two

teams is finished, the winner gets 3 points, the loser gets 0 points, while both teams get

1 point each in case their game ends in a draw.)

Find the minimum number of clubs such that each of them has at least one draw.

Problem 2. Let a be a real number. For each integer m > 0, define a sequence {am(j)},
j = 0, 1, 2, . . . , by the conditions

am(0) =
a

2m
and am(j + 1) = (am(j))2 + 2am(j) for j = 0, 1, 2, . . . .

Show that the limit limn→∞ an(n+ 5) exists and find it.

Problem 3. A positive integer n > 2 is called a m-powerful number if in the prime

factorization of n each prime appears with exponent at least m. Find all pairs of in-

tegers (m, k), where m > 2 and k > 3, for which there exists an increasing arithmetic

progression a1 < a2 < · · · < ak consisting of m-powerful numbers.

Problem 4. Find all polynomials P with real coefficients satisfying P (0) = 1 and

P (x)P (2x2) = P (2x3 + x) for all x ∈ R.

Each problem is worth 10 points.
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PROBLEMS WITH SOLUTIONS

Problem 1. There are 20 clubs in a football league of some country. It turned out

that after 19 rounds, when any two clubs played one game between themselves, the total

number of points collected by all 20 teams is 554. (In football, after a game between two

teams is finished, the winner gets 3 points, the loser gets 0 points, while both teams get

1 point each in case their game ends in a draw.)

Find the minimum number of clubs such that each of them has at least one draw.

Answer: 7.

Solution. Assume that there is a tournament as above with exactly k clubs having at

least one draw. The total number of games is 20·19
2

= 190. If ` is the total number of

draws, then the total number of points is 190 · 3 − ` = 570 − ` = 554, so ` = 16. Since

each of 20 − k clubs won or lost each of their games, the total number of draws is at

most k(k−1)
2

. This implies 16 6 k(k−1)
2

, which is not the case for k 6 6. Hence, k > 7.

Furthermore, for k = 7, the tournament as required exists. For example, assume that

the teams A,B,C,D,E, F played all draws between themselves, and, in addition, it was

a draw between A and G, but there were no draws in all other games. Then, the total

number of draws is 6·5
2

+ 1 = 16, the total number of points is 554, and exactly 7 teams,

namely A,B,C,D,E, F,G, were involved in at least one draw. �

Problem 2. Let a be a real number. For each integer m > 0, define a sequence {am(j)},
j = 0, 1, 2, . . . , by the conditions

am(0) =
a

2m
and am(j + 1) = (am(j))2 + 2am(j) for j = 0, 1, 2, . . . .

Show that the limit limn→∞ an(n+ 5) exists and find it.

Answer: e32a − 1.

Solution. Fix n > 1. Applying an(j + 1) + 1 = (an(j) + 1)2 to j = 0, 1, . . . , n + 4, we

deduce

an(n+ 5) + 1 =
(
an(0) + 1

)2n+5

=
(

1 +
a

2n

)2n+5

.

By L’Hôpital’s rule, we have

lim
x→0

log(1 + ax)

x
= a,

so that

lim
x→0

(1 + ax)
25

x = lim
x→0

e
25 log(1+ax)

x = e32a.
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In particular, for the sequence x = xn = 1
2n

, n = 1, 2, 3, . . . , we find that

lim
n→∞

(
1 +

a

2n

)2n+5

= e32a,

which implies limn→∞ an(n+ 5) = e32a − 1. �

Problem 3. A positive integer n > 2 is called a m-powerful number if in the prime

factorization of n each prime appears with exponent at least m. Find all pairs of in-

tegers (m, k), where m > 2 and k > 3, for which there exists an increasing arithmetic

progression a1 < a2 < · · · < ak consisting of m-powerful numbers.

Answer: All pairs of integers (m, k), where m > 2 and k > 3.

Solution 1. Fix m > 2. The proof is by induction on k, starting from the trivial case

k = 2, when we can take, for instance, a1 = 2m and a2 = 3m. Assume that for some

k > 2 there is an increasing arithmetic progression a1 < a2 < · · · < ak of m-powerful

numbers with difference d. Set a = ak +d. Then a1 < a2 < · · · < ak < a is an arithmetic

progression with a difference d. Multiplying each term of this sequence by am, we arrive

to the (k + 1)-term arithmetic progression

a1a
m < a2a

m < · · · < aka
m < am+1

with difference dam, whose all terms are m-powerful numbers. �

Solution 2 (by Yunus Emre Tuzcu). Take the arithmetic progression aj = j · k!m for

j = 1, . . . , k with difference k!m. Then, for each j in the range 1 6 j 6 k, the integer

aj is m-powerful, because it has only prime divisors at most k, and each of those prime

divisors appears with exponent at least m. �

Problem 4. Find all polynomials P with real coefficients satisfying P (0) = 1 and

P (x)P (2x2) = P (2x3 + x) for all x ∈ R.

Answer: P (x) = (x2 + 1)n for some integer n > 0.

Solution. Assume that the leading term of P is axm, where a 6= 0 and m > 0. For

m = 0, by P (0) = 1, we get a = 1. Evidently, the constant polynomial P (x) = 1

satisfies both conditions. For m > 1, the leading terms of both sides are axm · a2mx2m

and a2mx3m. This forces a2 = a, and hence a = 1. Thus, P is monic and, as P (0) = 1,

the product of all roots of P must be ±1. (Clearly, zero is not a root of P .) We claim

that all roots of P are unimodular. Indeed, if not, then there must be a root α of P

satisfying |α| > 1. Assume that α is the largest (in modulus) root of P . (If there are

several roots of the largest moduli, then α can be any of them.) By the functional

equation, P (α) = 0 implies P (2α3 + α) = 0, so 2α3 + α is also a root of P . But then,
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by |2α3 + α| > 2|α|3 − |α| > |α|, we get that the root 2α3 + α of P has strictly greater

modulus than that of α, a contradiction. Therefore, all roots of P are unimodular.

Now, take any root α of P . From the fact that the complex numbers α, α, 2α3 + α

and its complex conjugate 2α3 + α are all unimodular, using αα = 1, we derive that

1 = (2α3 + α)(2α3 + α) = 4 + 2(α2 + α2) + 1 = 5 + 2
(
(α + α)2 − 2

)
= 1 + 2(α + α)2.

Consequently, α + α = 0, and hence <(α) = 0, which is equivalent to {α, α} = {i,−i}.
Therefore, half of the roots of P are equal to i and half are equal to −i. It follows that

m must be even and P has the form P (x) = (x− i)n(x+ i)n = (x2 +1)n for some positive

integer n. Since

(x2 + 1)((2x2)2 + 1) = (x2 + 1)(4x4 + 1) = 4x6 + 4x4 + x2 + 1 = (2x3 + x)2 + 1,

this polynomial clearly satisfies both conditions. �


