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PROBLEMS

Problem 1. Find the smallest positive integer k with the following property: there exist

five distinct integers m1,m2,m3,m4,m5 such that the polynomial

P (x) = (x−m1)(x−m2)(x−m3)(x−m4)(x−m5)

has exactly k nonzero coefficients.

Problem 2. Let S be the set of all positive integers that can be written as

1

a1
+

2

a2
+ · · ·+ 10

a10
,

where a1, a2, . . . , a10 are (not necessarily distinct) positive integers.

(i) Prove that 1 ∈ S.

(ii) Prove that 12 ∈ S.

(iii) Find the largest element of S.

(iv) Find the set S.

Problem 3. Show that for each a > 0 the integral∫ π/2

0

(cosx)a

(sinx)a + (cosx)a
dx

is convergent and find its value.

Problem 4. Let A and B be 2 × 2 matrices with integer entries such that A, A + B,

A + 2B, A + 3B, and A + 4B are all invertible matrices whose inverses have integer

entries. Show that for each t ∈ Z the matrix A + tB is invertible and that its inverse

has integer entries.

Each problem is worth 10 points.
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PROBLEMS WITH SOLUTIONS

Problem 1. Find the smallest positive integer k with the following property: there exist

five distinct integers m1,m2,m3,m4,m5 such that the polynomial

P (x) = (x−m1)(x−m2)(x−m3)(x−m4)(x−m5)

has exactly k nonzero coefficients.

Answer: k = 3.

Solution. If k = 1, then P (x) must be x5, but this P does not have five distinct zeros.

If k = 2, then P (x) = x5 + axr for some a ∈ Z \ {0} and 0 6 r 6 4. However, such P

has x = 0 as a double zero if r ∈ {2, 3, 4}, while if r ∈ {0, 1} it has a nonreal zero. (The

five roots of x5 + a and (x4 + a)x cannot be all real.) Therefore, such P cannot have

five distinct integral zeros, and hence k > 3. On the other hand, the example of degree

5 polynomial

x(x− 1)(x+ 1)(x− 2)(x+ 2) = x(x2 − 1)(x2 − 4) = x5 − 5x3 + 4x

with five distinct integer roots and three nonzero coefficients shows that the smallest k

with the required property is 3. �

Problem 2. Let S be the set of all positive integers that can be written as

1

a1
+

2

a2
+ · · ·+ 10

a10
,

where a1, a2, . . . , a10 are (not necessarily distinct) positive integers.

(i) Prove that 1 ∈ S.

(ii) Prove that 12 ∈ S.

(iii) Find the largest element of S.

(iv) Find the set S.

Answer: S = {1, 2, 3, . . . , 54, 55}.

Solution. We begin with the following.

Lemma 1. For any positive integers k > n there exist positive integers a1, a2, . . . , ak
such that

n =
1

a1
+

2

a2
+ · · ·+ k

ak
.
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Proof. If n = 1, then selecting a1 = · · · = ak = s = 1 + 2 + · · ·+ k we obtain

1 =
1

s
+

2

s
+ · · ·+ k

s
.

If 2 6 n 6 k, then choosing s = (1 + 2 + · · ·+ k)− (n− 1) we get

n =
1

s
+ · · ·+ n− 2

s
+
n− 1

1
+
n

s
+ · · ·+ k

s
.

Thus we can select aj = s for all j 6= n − 1 and an−1 = 1. This completes the proof of

the lemma. �

For any positive integers a1, a2, . . . , a10 we have

1

a1
+

2

a2
+ · · ·+ 10

a10
6

1

1
+

2

1
+ · · ·+ 10

1
= 1 + 2 + · · ·+ 10 = 55.

Hence, S ⊆ {1, 2, . . . , 54, 55}. We will prove that S = {1, 2, . . . , 54, 55}. This solves part

(iv) and covers all the other parts.

Fix n ∈ {1, 2, . . . , 54, 55}. If n 6 10, then n ∈ S by Lemma 1 with k = 10. Suppose

that 11 6 n 6 55. Choose the largest k ∈ {1, 2, . . . , 9} for which

n 6 k + (k + 1) + · · ·+ 10.

Then, as n > (k + 1) + (k + 2) + · · · + 10, we get 0 < n − (k + 1) − · · · − 10 6 k. By

Lemma 1, there exist positive integers a1, a2, . . . , ak for which

n− (k + 1)− · · · − 10 =
1

a1
+

2

a2
+ · · ·+ k

ak
.

Now, selecting ak+1 = · · · = a10 = 1, we obtain

n =
1

a1
+

2

a2
+ · · ·+ k

ak
+
k + 1

1
+ · · ·+ 10

1
,

and hence n ∈ S. �

Problem 3. Show that for each a > 0 the integral∫ π/2

0

(cosx)a

(sinx)a + (cosx)a
dx

is convergent and find its value.

Answer: π
4
.

Solution. Set

I(a) =

∫ π/2

0

(cosx)a

(sinx)a + (cosx)a
dx =

∫ π/2

0

1

1 + (tan x)a
dx.
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Substituting y = tanx we see that dy = dx
(cosx)2

= (1 + y2)dx, so

I(a) =

∫ ∞
0

1

(1 + ya)(1 + y2)
dy.

Since the integrand satisfies

0 <
1

(1 + ya)(1 + y2)
<

1

1 + y2

and
∫∞
0

dy
1+y2

= π/2, the integral I(a) is convergent for every a > 0. (Alternatively, one

can verify that at the endpoints 0, π/2 of the interval [0, π/2] the integrand (cosx)a

(sinx)a+(cosx)a

is 1 and 0 respectively. Since for any a > 0 the function is continuous and bounded on the

interval [0, π/2], the integral is a proper Riemann integral and is therefore convergent.)

Substituting x by π/2− x in I(a) we obtain

I(a) =

∫ π/2

0

(cosx)a

(sinx)a + (cosx)a
dx =

∫ π/2

0

(sinx)a

(sinx)a + (cosx)a
dx.

Therefore,

2I(a) =

∫ π/2

0

(cosx)a + (sinx)a

(sinx)a + (cosx)a
dx =

∫ π/2

0

1 · dx =
π

2
,

which implies I(a) = π/4. �

Problem 4. Let A and B be 2 × 2 matrices with integer entries such that A, A + B,

A + 2B, A + 3B, and A + 4B are all invertible matrices whose inverses have integer

entries. Show that for each t ∈ Z the matrix A + tB is invertible and that its inverse

has integer entries.

Solution. We first claim that a square matrix M with integer entries has an inverse with

integer entries if and only if detM = ±1. Indeed, if N is the inverse of M , then

detM · detN = det(MN) = 1,

so detM = ±1. Conversely, if detM = ±1, then ±M ′ is an inverse with integer

entries, where M ′ is the classical adjoint of M . This completes the proof of the claim.

(Alternatively, for 2×2 integer matrix M =

(
a b

c d

)
with determinant δ = ad−bc = ±1

observe that the integer matrix

(
δd −δb
−δc δa

)
is the inverse of M .)

Set f(x) = det(A+ xB). Then f(x) is a polynomial in Z[x] of degree at most 2 such

that f(x) ∈ {−1, 1} for x = 0, 1, 2, 3, 4. Thus, by the Pigeonhole Principle, f takes some

value θ ∈ {−1, 1} at three or more distinct points x. But the only polynomials of degree

at most 2 that take the same value θ three or more times are the constant polynomials
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f(x) = θ. This implies that det(A + xB) = θ for each x ∈ R. In particular, inserting

x = t ∈ Z, we obtain

det(A+ tB) = θ = ±1.

Hence, by the above claim, the matrix A + tB with integer entries has an inverse with

integer entries. �


